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Abstract

This paper deals with normalization of

language data from Early New High Ger-

man. We describe an unsupervised, rule-

based approach which maps historical

wordforms to modern wordforms. Rules

are specified in the form of context-aware

rewrite rules that apply to sequences of

characters. They are derived from two

aligned versions of the Luther bible and

weighted according to their frequency.

The evaluation shows that our approach

(83%–91% exact matches) clearly outper-

forms the baseline (65%).

1 Introduction1

Historical language data differs from modern data

in that there are no agreed-upon, standardized

writing conventions. Instead, characters and sym-

bols used by the writer of some manuscript in parts

reflect impacts as different as spatial constraints or

dialect influences. This often leads to inconsistent

spellings, even within one text written up by one

writer.

The goal of our research is an automatic map-

ping from wordforms from Early New High Ger-

man (ENHG, 14th–16th centuries) to the cor-

responding modern wordforms from New High

German (NHG). Enriching the data with modern

wordform annotations facilitates further process-

ing of the data, e.g. by POS taggers.

In this paper, we present a rule-based approach.

Given an input wordform, (sequences of) char-

acters are replaced by other characters according

to rules that have been derived from two word-

aligned corpora. The results show that our ap-

1We would like to thank the anonymous reviewers for
helpful comments. The research reported here was fi-
nanced by Deutsche Forschungsgemeinschaft (DFG), Grant
DI 1558/4-1.

proach clearly outperforms the baseline. However,

there is still room for some improvement.

The paper is organized as follows. Sec. 2 dis-

cusses related work; in Sec. 3, we introduce our

data. Sec. 4 addresses the way we derive rewrite

rules from the data, while Sec. 5 deals with the

application of the rules to generate modern word-

forms. Sec. 6 presents the evaluation, Sec. 7 the

conclusion.

2 Related Work

Baron et al. (2009) present two tools for normal-

ization of historical wordforms. VARD consists

of a lexicon and user-defined replacement rules,

and offers an interface to edit and correct automat-

ically normalized wordforms. DICER2 is a tool

that derives weighted context-aware character edit

rules from normalized texts. The algorithm that

creates these rules is not described in their paper,

though.

Jurish (2010) compares different methods to

normalize German wordforms from 1780–1880.

The methods include mappings based on pho-

netic representations and manually created rewrite

rules. The highest F-score (99.4%) is achieved by

an HMM (Hidden Markov Model) that selects one

of the candidates proposed by the other methods.

Research on normalizing historical language

data has also been done in the field of Information

Retrieval, applied to historical documents. They

address the task reverse to ours: mapping modern

wordforms to historical (or dialectal) wordforms.

Ernst-Gerlach and Fuhr (2006) run a

spellchecker on their data (19th century Ger-

man) to detect wordforms that differ from NHG

wordforms, and to generate normalized wordform

candidates. Context-aware rules that rewrite

character sequences are derived from the pairs.

They achieve an F-score of 60%.

2http://corpora.lancs.ac.uk/dicer/



ENHG AM anfang schuff Gott Himel vnd Erden [. . . ] VND Gott schuff den Menschen jm zum Bilde /
NHG Am Anfang schuf Gott Himmel und Erde [. . . ] Und Gott schuf den Menschen ihm zum Bilde ,
EN In the beginning created God heavens and earth and God created the man him in the image

ENHG zum Bilde Gottes schuff er jn / Vnd schuff sie ein Menlin vnd Frewlin .
NHG zum Bilde Gottes schuf er ihn ; und schuf sie ein Männlein und Fräulein .
EN in the image of God created he him and created them a male and female

Table 1: The original ENHG and the modernized NHG version of Genesis 1:1 and 1:27, along with an

English interlinear translation.

Hauser and Schulz (2007) use a corpus from

ENHG and a dictionary from NHG to derive re-

placement rules of (sequences of) characters. To

this end, they first assign ENHG wordforms to

NHG dictionary entries, using Levenshtein dis-

tance to pick suitable candidate entries; word-

forms with ambiguous assignments are excluded.

The rule frequencies are used as weights for the

rule applications. For generating ENHG lem-

mas from NHG lemmas, they achieve F-Scores

between 56.9% (without weights), 66.2% (with

weights derived from lexicon mappings), and

71.2% (with perfect training pairs).

Strunk (2003) uses weighted Levenshtein dis-

tance to generate dialectal wordform variants for

IR of Low Saxon texts. Weights are manually de-

fined and encode phonetic similarity.

Our approach is similar to Ernst-Gerlach and

Fuhr (2006) and Hauser and Schulz (2007) in

that we derive replacement rules of character se-

quences from aligned pairs. The algorithms to

learn rules differ, though. Ernst-Gerlach and Fuhr

(2006) specify recursive definitions that take into

account rewrite sequences and contexts of varying

sizes; rules can refer to characters or to the under-

specified classes ‘vowel’ and ‘consonant’. Hauser

and Schulz (2007) extract n-gram sequences of

varying size from the aligned wordforms, and

learn n-gram mapping rules. Furthermore, our ap-

proach differs from theirs in that our training pairs

stem from aligned corpora.

The evaluations cannot be easily compared be-

cause it is not clear to what extent the language

data base is comparable with regard to its varia-

tion. The data from Jurish (2010) contains 59.2%

identical word pairs (types), the data from Ernst-

Gerlach and Fuhr (2006) 94%. In our data, only

51% of the pair types align identical words.

Furthermore, in our task, a historical form is

most often mapped to one modern equivalent

form; in the reverse task, a modern form is mapped

to multiple historical variants.

3 The Corpus

In our approach, replacement rules are derived

from word-aligned parallel corpora. A source that

provides a parallel corpus in many languages, in-

cluding historical ones, is the bible.

The collected works of Martin Luther are freely

available from the web.3 They include several ver-

sions of his bible translation, modernized to vary-

ing degrees. We chose the original ENHG version

of the 1545 bible (which has been enriched with

modern punctuation) as well as a revised NHG

version of it, which uses modern spelling and re-

places extinct words by modern ones.4

Table 1 shows text fragments in both versions.

Differences concern capitalization (AM – Am, an-

fang – Anfang), character reduplication (schuff –

schuf, Himel – Himmel), deletion (Erden – Erde),

insertion, or replacement (Frewlin – Fräulein).

Compared to other texts from that time, the lan-

guage of Luther’s 1545 bible is rather close to

NHG, since the evolution of NHG was heavily

influenced by Luther’s bible translation (Besch,

2000). Furthermore, printed texts in general show

more consistent spelling than manuscripts, and use

abbreviations to a lesser extent than manuscripts

(Wolf, 2000); no abbreviations occur in Luther’s

1545 bible. Hence, we expect that our approach

can be transferred and applied to other printed

texts more easily than to manuscripts.

Alignment The files contain one bible verse per

line. A verse usually corresponds to one sen-

tence; some verses, however, consist of more than

one sentence. Sometimes the assignment of sen-

tences or phrases to verses had been changed from

the original to the modernized version to an as-

signment that is presumably closer to the original

3For instance: http://www.sermon-online.de.
4The original 1545 version is incorrectly called “Alt-

deutsch” (‘Old German’) in the archive. Our NHG text
(which is possibly the 1892 revision) is a rather conserva-
tive version, while the 1912 and 1984 revised versions also
contain corrections of mistranslations by Luther and, hence,
deviate from the original ENHG text to a greater extent.



Greek version. The verses were rectified manu-

ally so that each version had the same number of

verses. A few OCR mistakes were also manually

corrected (e.g. 3ott was replaced by Gott ‘god’).

The entire corpus was then tokenized using the to-

kenizer script supplied with the Europarl corpus

(Koehn, 2005), and afterwards downcased.

Since there were still asymmetries in the as-

signment of phrases and sentences to the verses

between the versions, the resulting corpus was

not yet properly aligned. We applied a sentence

aligner to our data, the Gargantua toolkit (Braune

and Fraser, 2010). Next, the words of each aligned

verse pair were aligned using the GIZA++ toolkit

(Och and Ney, 2003).

The modernization often involves transforming

words into phrases and vice versa, such as soltu –

sollst du ‘should you’, or on gefehr – ohngefähr

‘approximately’ (literally: ‘without danger (of

saying so)’). Hence, it is crucial that the word

aligner can handle 1:n/n:1 alignments. Upon man-

ual inspection, we found a lot of misalignments

with rarer tokens, many of which involve num-

bers, such as zweiundzwanzig ‘twenty-two’, which

would actually correspond to the multi-word to-

ken zwey vnd zwenzig in the original 1545 version.

These were probably misaligned because their fre-

quency in the corpus is not high enough to train a

translation model.

To minimize noise in our system’s input, align-

ment pairs with a length difference of more

than five characters were excluded from fur-

ther processing. Since the two texts are highly

similar—around 65% of the pairs align identical

wordforms—a length difference of that magnitude

rarely leads to meaningful alignments.

Some corpus statistics To assess the quality of

the resulting word pairs, we had a small sample

of 1,000 pairs of aligned non-identical wordforms

from the evaluation corpus manually inspected by

a student assistant. We identified six types of

alignments, listed in Table 2.5 Instances that were

difficult to classify are assigned to a special class.

For deriving replacement rules, type 1 align-

ments are the perfect input. Pairs of type 2 and 3

are still useful, to a certain extent: correct rules can

be derived from the word roots; mapping of differ-

ing inflection and affixes, however, should proba-

5Throughout the paper, the examples are taken from the
development corpus while the figures are calculated based on
the evaluation corpus.

Type Example Freq Eval

1. Unproblematic vnd – und ‘and’ 609 77%
2. Differing

inflection
truncken – trunkenen
‘drunken’

261 18%

3. Differing
affixes

oben – obenan ‘on top’ 40 5%

4. Closer modern
form exists

noch – weder ‘nei-
ther/nor’

0 –

5. Extinct form stündlin - an dem

Tage ‘on that day’
1 –

6. Incorrect zwey ‘two’ – für ‘for’ 25 0%
7. Unclear cases fur ‘for’ (?) – für ‘for’ 64 19%

Table 2: Alignment types: types 1–5 are correct to

various degrees, type 6 is incorrect. For each type,

its frequency in the sample and evaluation results

for the more frequent types are given (see Sec. 6).

bly not be learned. Type 4 and 5 pairs (which oc-

cur very rarely) could be used to derive mappings

of entire words rather than character sequences.

Type 6 alignments clearly constitute noise.

We further computed the number of target types

a source word maps to. The pie chart in Fig. 1

shows that the vast majority of source types map

to only one target type, with a significant minority

mapping to two forms. The proportion of source

types mapping to 4–8 target types was so negligi-

ble that they were merged in the pie chart. The

quantity of source tokens that map to more than

one target type on the other hand is pretty large.

Even though the majority still has 1–2 mappings,

about 20–30% of source tokens map to more than

5 target types, as the central bar plot of Fig. 1

shows. However, if we exclude targets that oc-

cur only five times or less, the graph shows a more

balanced picture (right bar plot). Since the appli-

cation of rules is based on their frequencies, it is

highly likely that the impact of the infrequent rules

is balanced out by the dominant ones.

Procedure The resulting corpus consists of

550,000 aligned pairs of words or phrases. We

randomly picked 20% of the alignment pairs for

a development corpus, which was used for the de-

velopment of the rule extraction and application

processes described below. Another 40% were af-

terwards used to extract the replacement rules for

the following experiments (= training corpus), and

a final 20% were picked for an evaluation corpus.

4 Normalization Rules

We used a modified algorithm for Levenshtein dis-

tance which not only calculates the numerical edit
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Figure 1: Target types per source type/token. The pie chart shows the result for source types (evaluation

corpus), the central bar plot shows the results for all source tokens, the right bar plot only considers

tokens with a frequency > 5 (training and evaluation corpus). The columns are labeled by absolute

frequencies.

distance, but also outputs the respective edit opera-

tions (substitution, insertion, and deletion of single

characters) that map the strings to each other. The

record of edit operations was enriched with infor-

mation about the immediate context of the edited

character. Ex. (1) shows two sample edit opera-

tions, using the notation of phonological rewrite

rules.

(1) a. ε → h / j r

(‘h’ is inserted between ‘j’ and ‘r’)

b. v → u / # n

(‘v’ is replaced by ‘u’ between the left

word boundary (‘#’) and ‘n’)

Determining the context for these edit opera-

tions is not straightforward, because applying one

rule can change the context for other rules. Since

the Levenshtein implementation applies the rules

from left to right, we decided to use the (new) tar-

get word for the left context and the (unaltered)

source word for the right context (see also Fig. 2).

Identity rules In addition to canonical replace-

ment rules, our rule induction algorithm also pro-

duces identity rules, i.e. rewrite rules that map a

character to itself. Identity rules reflect the fact

that the majority of words remain unaltered when

mapped to their modernized forms, and many

words are modified by few characters only. Iden-

tity rules and actual rewrite rules are intended to

compete with each other during the process of

rewriting.

Multiple optimal paths Since the dynamic pro-

gramming algorithm works by determining a

least-cost path through a matrix, we are faced with

the problem that there may be multiple optimal

paths. In fact, this situation arises quite often.

Ex. (2) shows two optimal paths/alignments for

the pair jrem – ihrem ‘their’.6

(2) a.
Input j r e m

Operations s + = = =

Output i h r e m

b.
Input j r e m

Operations + s = = =

Output i h r e m

The ambiguity is obviously of no consequence

for the numerical distance, which is two for both

cases, but it makes a big difference for the rules.

In particular, it is usually very clear that one of

the alignments is the “correct” one (reflecting facts

about language change, here: Ex. (2a)), while the

other one is an implementation artifact (Ex. (2b)).

Rule sets and sequence-based rules To solve

the ambiguity problem, we first pick a random

path by preferring substitution over deletion over

addition on the cell level in the matrix. The rules

derived this way are combined to rule sets after-

wards. This is done by inspecting the positions

in the source and target word where the edits are

made. Whenever a series of edits occurs at the

same target or source position, we assume that

this is actually an insertion or deletion of a se-

quence of characters, such as an affix. When-

ever edits occur at adjacent positions, we assume

that it is a substitution of a character sequence by

another. By merging substitutions with adjacent

deletions/additions, we account for character se-

quences of variable length on each side of the rule.

6Operations: ‘+’ means insertion, ‘–’ deletion, ‘s’ substi-
tution, ‘=’ identity.



flad e r n

# e r r e n . . .

zyp r e sse n

Figure 2: The graph illustrates the actual map-

pings derived from fladernholtz – zypressenholz

‘cypress wood’. The central row shows the rule

contexts and how they are determined.

In the example jrem – ihrem above (Ex. (2)),

the first two rules would be merged since they are

derived from adjacent non-identity edit operations.

This leads to the correct solution to the multi-path

problem, shown in Ex. (3).

(3)
Input j r e m

Operations s = = =

Output ih r e m

Note however that the rule merging does not al-

ways come up with entirely correct alignments.

For the word pair fladernholtz – zypressenholz

‘cypress wood’, optimal alignment would map

flader→zypresse/# n whereas the actual

algorithm outputs smaller mappings, see Fig. 2.

Indiscriminate merging of identity rules would re-

sult in highly specific mappings of entire words

rather than character sequences—hence, identity

rules are never merged.

Epsilon identity rules In the system developed

so far, insertion rules are rather difficult to han-

dle. In generating modern wordforms by means

of the rewrite rules (see Sec. 5), they tend to ap-

ply in an uncontrollable way, garbling the words in

the process. This is due to the fact that the condi-

tions for the application of insertion rules are less

specific: while substitutions and deletions require

the left hand side (LHS) and the context to match

in the source word, insertions are constrained by

their two context characters only, since the LHS of

the rule is empty. At word boundaries, the prob-

lem gets even worse, since only one context side

is specified here. Furthermore, substitution and

deletion rules compete against the identity rules

for their LHS, which reflects the fact that the ma-

jority of characters are not changed in a mapping

to the modernized form—but no similar competi-

tor exists so far to curb the application of insertion

rules.

We therefore introduced epsilon identity rules:

after all replacement rules for an alignment pair

have been generated, an epsilon identity rule is

inserted between each pair of non-insertion rules,

i.e. at each position where no insertion has taken

place. The epsilon identity rules are taken to mean

that no insertion should be performed in the re-

spective context, thereby restricting the actual in-

sertion of characters.

Rank Frequency Rule

= 1 24,867 ε → ε / n #
= 2 18,213 ε→ ε / e r
= 3 18,200 ε → ε / e n
= 4 17,772 ε → ε / # d
= 5 14,871 ε → ε / r #
= 6 14,853 n → n / e #

s 20 8,448 v → u / # n
- 176 1,288 f → ε / u f
+ 239 932 ε → l / o l

156 1,443 j → ih / # r
272 796 j → ih / # n
329 601 j → ih / # m
605 263 ε → d / t u
879 142 ss → ß / o e

Table 3: Sample rankings and rules

Ranking of the rules Applying the rule induc-

tion algorithm to the development corpus yielded

about 1.1 million rule instances (training corpus:

2.2 million) of about 6,500 different types (train-

ing: 7,902). These were sorted and ranked ac-

cording to their frequency. Table 3 lists sample

instances of rules. Not surprisingly, none of the

top-ranked rules modifies the input word. Rank 6

is taken by the first rule that maps some real char-

acter rather than ε to itself (identity rules, ‘=’).

Rank 20 features the first substitution rule (‘s’),

etc. The bottom part of the table lists frequent

sequence-based rules. The rule ranked 605th maps

the empty string to a whitespace followed by ‘d’.

This rule applies in mappings such as soltu – sollst

du ‘should you’.

5 Generating Normalized Wordforms

Normalizing ENHG texts is done on a word-by-

word basis, i.e. the input of the normalizing pro-

cess is always a single wordform. Words are pro-

cessed from left to right; for each position within

a word, applicable edit rules are determined. As

with the rule extraction process, the left context

is taken from the output already generated up to

that point, while the right context is always taken

from the input word. If a rule is applied, its right-

hand side is appended to the output string, and the



next character from the input word is processed.

The process continues until the end of the word

has been reached.

Rules with sequences of characters on the left-

hand side (LHS) are applicable at the position of

their first LHS character. In that case, if the rule is

applied, processing continues with the next char-

acter that is not part of the LHS.

Epsilon rules Epsilon rules, and epsilon identi-

ties in particular, require special consideration to

work within this system. If an epsilon identity is

applied, no other epsilon rules should be allowed

for the same context, otherwise insertions would

not be blocked. To achieve this, epsilon is treated

like an ordinary letter with regard to the LHS, and

words are preprocessed so that exactly one ep-

silon is placed between each character and at word

boundaries. For example, if the input word is jrem

‘theirs’, it is converted internally to the following

form:

(4) # ε j ε r ε e ε m ε #

Now, if an epsilon rule is applied, the read/write

head moves to the next character, thereby ensur-

ing that no other epsilon rule can be applied at the

same time in the same position. This also prevents

application of multiple insertion rules but at the

same time still permits insertion of multiple char-

acters, since those are merged into sets during rule

extraction. Of course, epsilon characters have to

be ignored for all purposes except for the LHS of

replacement rules; in particular, they do never in-

fluence rule contexts or prevent the recognition of

character sequences on the LHS.

Ranking methods For each character and its

context within a word, there will usually be a num-

ber of applicable rules to choose from. As our aim

is to generate exactly one (modernized) form for

each input word, a decision has to be made about

which rule to apply. Two approaches were tested:

(i) selecting the rule which had the highest fre-

quency during rule acquisition (‘best-rule’); and

(ii) selecting the word with the highest probabil-

ity score (‘best-probability’), which is calculated

based on rule frequencies.

(i) ‘Best-rule’: In the first approach, if more

than one rule application is possible at a given po-

sition, we simply select the rule with the highest

frequency. The evaluation shows that this method

already works quite well, however, it also has a

Original bible words Generated words

Old Modernized Best-rule Best-prob.

1. vnd und X X

jrem ihrem X X

vmbher umher X X

2. wetter wetter X *dieuetter
krefftige kräftige X *krefftige
vrteil urteil X *urteill

3. fewr feuer *feur X

soltu sollst du *soltu X

4. ermanen ermahnen *ermanen *ermannen
zween zwei *zween *zwen

Table 4: Example mappings (prior to the dictio-

nary lookup) from the development corpus. ‘X’

means that the word is generated correctly by the

respective method, ‘*’ marks incorrectly gener-

ated wordforms. Words listed under 1. are gener-

ated correctly by both methods, words under 4. by

neither of them, the rest by one of the methodes.

disadvantage: as the left context for a rule depends

on the output of the previous one, applying one

rule can result in different rules being applicable

at later positions in the word. If we always apply

the most frequent rule, this can create situations

in which only very low-frequent rules are applica-

ble later, indicating that the resulting wordform is

unlikely to be correct. Also, when applying a rule

with a sequence of characters on the LHS, replace-

ment rules that modify any but the first character

of that sequence are never even considered.

For this reason, we came up with another

method that takes into account the frequencies of

all applied rules across the whole word.

(ii) ‘Best-probability’: In the second approach,

each generated variant is assigned a probability

score. We define the probability of a replace-

ment rule as its frequency divided by the sum

of all rule frequencies. The word probability is

calculated from the probabilities of the rules that

were used to generate it; for this, we used the

weighted harmonic mean, with the length of the

LHS as weights. If the LHS contains a sequence,

length is counted including additional epsilons be-

tween each character. This way, all variants gen-

erated from the same input word have the same to-

tal weight, regardless of whether sequence-based

rules were used or not.

Table 4 lists sample mappings as they result

from both methods.

Dictionary lookup Quite often, the highest-

ranked rules generate non-existing words. This



Total Identical Tokens NLD

Count Count Ratio Mean ± SD

Old bible text
(Baseline)

All 109,972 71,163 64.71% 0.1019 ± 0.1630
Identical 71,163 71,163 100.00% 0.0000 ± 0.0000

Non-identical 38,809 0 0.00% 0.2889 ± 0.1460
Unknowns 2,911 1,190 40.88% 0.1215 ± 0.1359

Best-rule method

All 109,972 91,620 83.31% 0.0408 ± 0.1039
Identical 71,163 70,467 99.02% 0.0018 ± 0.0198

Non-identical 38,809 21,153 54.51% 0.1122 ± 0.1483
Unknowns 2,911 1,390 47.75% 0.1081 ± 0.1357

Best-probability
method

All 109,972 92,172 83.81% 0.0396 ± 0.1041
Identical 71,163 69,358 97.46% 0.0042 ± 0.0279

Non-identical 38,809 22,814 58.79% 0.1046 ± 0.1509
Unknowns 2,911 1,255 43.11% 0.1201 ± 0.1407

Best-probability +
dictionary method

All 109,972 100,074 91.00% 0.0251 ± 0.0913
Identical 71,163 70,854 99.57% 0.0008 ± 0.0126

Non-identical 38,809 29,220 75.29% 0.0697 ± 0.1423
Unknowns 2,911 2,238 76.88% 0.0646 ± 0.1428

Table 5: Evaluation of exact matches and normalized Levenshtein distance (NLD) compared to the

modernized bible text; separately for all tokens (All), tokens that are or are not identical in both old

and modernized version (Identical/Non-identical), and tokens that were not seen in the training corpus

(Unknowns). The best result for each class is indicated in bold, the second-best in bold italics.

can be avoided by combining the methods de-

scribed above with a dictionary lookup. For this,

all variants are generated and then matched against

a dictionary. From all variants that are covered by

the dictionary, the one with the highest score (best-

rule or best-probability) is selected as the output

form. If no variant can be generated in this way,

the input word is left unchanged. The dictionary

used here consists of all wordforms from the mod-

ernized NHG Luther bible.7

6 Evaluation

For evaluation, we generated normalized forms of

all words in the evaluation corpus and compared

them to their aligned forms in the modernized

bible text. Two methods of comparison were ap-

plied: (i) counting the number of identical word-

forms; and (ii) calculating the average normalized

Levenshtein distance (NLD). Full evaluation re-

sults are shown in Table 5. Results for the dictio-

nary method are only reported in combination with

the best-probability method, which clearly outper-

form the combination with the best-rule method.

Exact matches As our aim is to generate mod-

ernized wordforms from historical ones, the logi-

7Using a dictionary with wordforms from current newspa-
per texts turned out problematic, since modern abbreviations,
typos, etc., result in too many false positives with the dictio-
nary lookup. Moreover, the vocabulary of newspaper texts
differs considerably from religious texts.

cal first step of an evaluation is to check how many

words from the ENHG text from 1545, when pro-

cessed with our algorithms, exactly match their

modernized NHG counterparts. Before normaliza-

tion, the ratio of identical tokens in the historical

and the modernized text is about 65%, i.e., only

a third of all wordforms even differ at all. This

is the baseline for our algorithm; any normalizing

process that results in less than 65% exact matches

has likely done more harm than good, and it would

be better to leave all words unchanged. Table 5

shows that both ranking methods we employed,

best-rule and best-probability, achieve match ra-

tios above 83% (lines ‘All’, column ‘Ratio’),

which is a significant increase from the baseline;

combining the best-probability method with the

dictionary lookup even yields 91% exact matches.

Our normalization approach is not only successful

in changing historical forms to modern ones, but

also in correctly leaving most of the wordforms

unchanged that do not need to be changed (97.46–

99.57%; lines ‘Identical’, column ‘Ratio’).

Results from evaluating the dictionary method

on the annotated sample set of non-identical word

pairs are shown in Table 2. Although the sam-

ple size is very small, the numbers suggest that

our approach is mostly suitable for pairs of type 1

(besides identical word pairs); in particular, it can

only ‘repair’ some inflection or affixes (types 2–3).

Incorrect mappings (type 6) are not produced.



Total Identical Tokens NLD

Count Count Ratio Mean ± SD

Best-
rule

18,352 696 3.79% 0.2483 ± 0.1368
18,352 0 0.00% 0.2443 ± 0.1226

Best-
prob.

17,800 1,805 10.14% 0.2372 ± 0.1495
17,800 0 0.00% 0.2447 ± 0.1297

Dict.
9,898 309 3.12% 0.2876 ± 0.1528
9,898 0 0.00% 0.2789 ± 0.1479

Table 6: NLD evaluation of word pairs that do not

match their aligned word after normalization. The

first line of each method shows the NLD before

rule application, the second line afterwards.

Normalized Levenshtein distance However,

simply counting correct guesses does not take into

account near-misses, where the algorithm edited

only a part of the word correctly, and is also not

a very fine-grained way of evaluation. There-

fore, we chose to use normalized Levenshtein dis-

tance (Beijering et al., 2008) to assess whether

our normalized variants are ‘closer’ to the correct

modern version than the (non-normalized) source

words. The NLD of a word pair is defined as the

Levenshtein distance divided by the length of the

longest possible alignment of the two words.8 To

evaluate a set of word pairs, we calculate the aver-

age NLD of all word pairs in that set. This mea-

sure is not ideal for our task, since short words

are unduly penalized for being wrong, but it has

the advantage of being relatively intuitive; e.g., a

NLD of 0.5 indicates that roughly every second

character in a word was altered.

Comparing the old and the modernized bible

text yields an average NLD of 0.1019; as two

thirds of all words are already identical, this num-

ber is quite low. The three normalization methods

reduce that number to 0.0408–0.0251; this reduc-

tion stems, in parts, from the higher match ratio.

To evaluate whether the normalization improved

the wordforms even if they do not exactly match

the aligned form, we re-evaluated average NLD

on the sets of words that did not result in an exact

match. The results, given in Table 6,9 show only

8As a side effect of our rules induction process, we can
easily calculate the number of alignment slots, since it equals
the total number of edit and (non-epsilon) identity rules.

9Words considered here include (i) words from identical
word pairs that unnecessarily have been modified (this, e.g.,
concerns 696 words with the best-rule method) and (ii) words
from non-identical word pairs that have not been normalized
successfully (best-rule: 18,352–696 = 17,656 words).

a slight improvement for the best-rule method,

while the best-probability method has even in-

creased the average NLD. With the latter method,

a high percentage of mismatches (10.14%) results

from source words that did not need to be changed.

Combined with the dictionary lookup, the ratio

of such cases is considerably reduced (to 3.12%).

Even the dictionary method is not able to com-

pletely avoid superfluous modifications. The rea-

son is that there are ambiguous words such as

waren, which can either be mapped to wahren

‘true’ or left unchanged: waren ‘were’. This

means that at the type level it cannot be decided

which of the two mappings is correct. Instead, we

would need context information at the token level,

which is beyond our word-based approach.10

Method comparison Even though the results

for both ranking methods are quite close when

evaluated on all word pairs (83.31% versus

83.81%), the difference is statistically significant

within a confidence level of 99.9%, i.e., the best-

probability method results in better normalizations

on average. This is especially reflected in the

numbers for the non-identical word pairs, where

the difference between the two methods is even

greater. On the other hand, the best-rule method

performs better on ‘unknowns’, i.e. words which

were not already part of the training set (see Ta-

ble 5). This seems to indicate that a combination

of both methods could be favorable.

The overlap of the word lists generated by the

two methods is 93.13%, showing that there is a no-

ticeable percentage of words (around 3%) which

is modernized correctly with one method but not

the other. One crucial difference is the normaliza-

tion of second person verb forms ending in –tu,

e.g. soltu ‘should you’, which should be modern-

ized to sollst du. These forms show a contrac-

tion of verb and pronoun and are quite common in

the original ENHG bible text. With the best-rule

method, they do not get changed at all, as the ep-

silon identity rules are ranked higher than the ones

that would perform the necessary insertions. The

best-probability method, on the other hand, out-

puts the correctly modernized form; rules that pro-

cess the letter u appearing word-final after t have

a very low probability, thus decreasing the total

probability of the unmodified wordform.

Finally, combining the methods with a dictio-

nary lookup results in remarkable improvements.

10Jurish (2010) takes context information into account.



The number of exact matches increases from

83.31% to 88.66% (best-rule), and from 83.81%

to 91.00% (best-probability). As can be seen from

Table 5, the dictionary lookup on the one hand

helps to avoid superfluous normalization (with

identical word pairs). On the other hand, it also

improves on rule application, by filtering out rules

(or combinations of rules) that do not result in sen-

sible words. In contrast to rules, which operate

locally, the dictionary lookup has access to the en-

tire wordform and thus serves as a complementary

“guide” for suitable rule selection.

Since we use the complete modernized Luther

bible as the source of our dictionary, all correctly

normalized wordforms are guaranteed to be listed

in the dictionary. In this sense, the results repre-

sent an upper bound of this method. However, the

larger a dictionary is, the higher will be the chance

of “false friends”, i.e. wordforms that accidentally

match a generated wordform.

7 Conclusion

We showed that using only unsupervised learning,

a minimum of knowledge engineering, and freely

available resources, it is possible to map histori-

cal wordforms to their modern counterparts with

a high success rate. Even the simplest implemen-

tation of the process performs far better than the

baseline, a success that we were able to further im-

prove upon.

Open issues include the multi-path problem,

which is still not entirely solved, despite the intro-

duction of sequence-based rules (see Section 4 and

especially Fig. 2). There are a number of potential

solutions that we could pursue. The rule extrac-

tion process could be modified to output all possi-

ble paths from the source to the target word. This

would require some means to decide on the most

plausible path, such as the total number of rules af-

ter the single-character rules have been merged to

sets. Phonetic or even graphemic similarity (such

as the common substitutions of u and v) could also

be taken into account.

Another issue would be to replace our simple

heuristic of sequence determination by the use of

an association measure, such as the log-likelihood

ratio or the Fisher-Yates test, to determine which

rules are merged to sequences. This could include

identity rules in the sequences, which might solve

problems such as the one presented in Fig. 2.

Association measures could be further used to

determine the significance of the association be-

tween a rule and its context, and to potentially ab-

stract the rules from their specific contexts.

Another open question is the handling of multi-

tokens as source words. Since currently the rule

application operates on single words, multiple

source tokens can never be merged to a single

target token, even though that happens quite fre-

quently in our texts.
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