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Abstract

This paper deals with normalization of
language data from Early New High Ger-
man. We describe an unsupervised, rule-
based approach which maps historical
wordforms to modern wordforms. Rules
are specified in the form of context-aware
rewrite rules that apply to sequences of
characters. They are derived from two
aligned versions of the Luther bible and
weighted according to their frequency.
The evaluation shows that our approach
(83%—-91% exact matches) clearly outper-
forms the baseline (65%).

1 Introduction'

Historical language data differs from modern data
in that there are no agreed-upon, standardized
writing conventions. Instead, characters and sym-
bols used by the writer of some manuscript in parts
reflect impacts as different as spatial constraints or
dialect influences. This often leads to inconsistent
spellings, even within one text written up by one
writer.

The goal of our research is an automatic map-
ping from wordforms from Early New High Ger-
man (ENHG, 14th-16th centuries) to the cor-
responding modern wordforms from New High
German (NHG). Enriching the data with modern
wordform annotations facilitates further process-
ing of the data, e.g. by POS taggers.

In this paper, we present a rule-based approach.
Given an input wordform, (sequences of) char-
acters are replaced by other characters according
to rules that have been derived from two word-
aligned corpora. The results show that our ap-
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proach clearly outperforms the baseline. However,
there is still room for some improvement.

The paper is organized as follows. Sec. 2 dis-
cusses related work; in Sec. 3, we introduce our
data. Sec. 4 addresses the way we derive rewrite
rules from the data, while Sec. 5 deals with the
application of the rules to generate modern word-
forms. Sec. 6 presents the evaluation, Sec. 7 the
conclusion.

2 Related Work

Baron et al. (2009) present two tools for normal-
ization of historical wordforms. VARD consists
of a lexicon and user-defined replacement rules,
and offers an interface to edit and correct automat-
ically normalized wordforms. DICER? is a tool
that derives weighted context-aware character edit
rules from normalized texts. The algorithm that
creates these rules is not described in their paper,
though.

Jurish (2010) compares different methods to
normalize German wordforms from 1780-1880.
The methods include mappings based on pho-
netic representations and manually created rewrite
rules. The highest F-score (99.4%) is achieved by
an HMM (Hidden Markov Model) that selects one
of the candidates proposed by the other methods.

Research on normalizing historical language
data has also been done in the field of Information
Retrieval, applied to historical documents. They
address the task reverse to ours: mapping modern
wordforms to historical (or dialectal) wordforms.

Ernst-Gerlach and Fuhr (2006) run a
spellchecker on their data (19th century Ger-
man) to detect wordforms that differ from NHG
wordforms, and to generate normalized wordform
candidates.  Context-aware rules that rewrite
character sequences are derived from the pairs.
They achieve an F-score of 60%.

2http ://corpora.lancs.ac.uk/dicer/



ENHG AM anfang

NHG Am  Anfang

EN In_the beginning created God heavens and earth
ENHG zum Bilde Gottes schuff er jn / Vnd schuff
NHG zum Bilde Gottes schuf er ihn ; und schuf
EN in_the image of_God created he him

and created them a

schuff Gott Himel vnd Erden [...] VND Gott schuff den Menschen jm zum Bilde /
schuf Gott Himmel und Erde [...] Und Gott schuf den Menschen ihm zum Bilde ,

and God created the man  him in_the image

sie ein Menlin vnd Frewlin .
sie ein Minnlein und Fraulein .
male and female

Table 1: The original ENHG and the modernized NHG version of Genesis 1:1 and 1:27, along with an

English interlinear translation.

Hauser and Schulz (2007) use a corpus from
ENHG and a dictionary from NHG to derive re-
placement rules of (sequences of) characters. To
this end, they first assign ENHG wordforms to
NHG dictionary entries, using Levenshtein dis-
tance to pick suitable candidate entries; word-
forms with ambiguous assignments are excluded.
The rule frequencies are used as weights for the
rule applications. For generating ENHG lem-
mas from NHG lemmas, they achieve F-Scores
between 56.9% (without weights), 66.2% (with
weights derived from lexicon mappings), and
71.2% (with perfect training pairs).

Strunk (2003) uses weighted Levenshtein dis-
tance to generate dialectal wordform variants for
IR of Low Saxon texts. Weights are manually de-
fined and encode phonetic similarity.

Our approach is similar to Ernst-Gerlach and
Fuhr (2006) and Hauser and Schulz (2007) in
that we derive replacement rules of character se-
quences from aligned pairs. The algorithms to
learn rules differ, though. Ernst-Gerlach and Fuhr
(2006) specify recursive definitions that take into
account rewrite sequences and contexts of varying
sizes; rules can refer to characters or to the under-
specified classes ‘vowel” and ‘consonant’. Hauser
and Schulz (2007) extract n-gram sequences of
varying size from the aligned wordforms, and
learn n-gram mapping rules. Furthermore, our ap-
proach differs from theirs in that our training pairs
stem from aligned corpora.

The evaluations cannot be easily compared be-
cause it is not clear to what extent the language
data base is comparable with regard to its varia-
tion. The data from Jurish (2010) contains 59.2%
identical word pairs (types), the data from Ernst-
Gerlach and Fuhr (2006) 94%. In our data, only
51% of the pair types align identical words.

Furthermore, in our task, a historical form is
most often mapped to one modern equivalent
form; in the reverse task, a modern form is mapped
to multiple historical variants.

3 The Corpus

In our approach, replacement rules are derived
from word-aligned parallel corpora. A source that
provides a parallel corpus in many languages, in-
cluding historical ones, is the bible.

The collected works of Martin Luther are freely
available from the web.? They include several ver-
sions of his bible translation, modernized to vary-
ing degrees. We chose the original ENHG version
of the 1545 bible (which has been enriched with
modern punctuation) as well as a revised NHG
version of it, which uses modern spelling and re-
places extinct words by modern ones.*

Table 1 shows text fragments in both versions.
Differences concern capitalization (AM — Am, an-
fang — Anfang), character reduplication (schuff —
schuf, Himel — Himmel), deletion (Erden — Erde),
insertion, or replacement (Frewlin — Frdulein).

Compared to other texts from that time, the lan-
guage of Luther’s 1545 bible is rather close to
NHG, since the evolution of NHG was heavily
influenced by Luther’s bible translation (Besch,
2000). Furthermore, printed texts in general show
more consistent spelling than manuscripts, and use
abbreviations to a lesser extent than manuscripts
(Wolf, 2000); no abbreviations occur in Luther’s
1545 bible. Hence, we expect that our approach
can be transferred and applied to other printed
texts more easily than to manuscripts.

Alignment The files contain one bible verse per
line. A verse usually corresponds to one sen-
tence; some verses, however, consist of more than
one sentence. Sometimes the assignment of sen-
tences or phrases to verses had been changed from
the original to the modernized version to an as-
signment that is presumably closer to the original

3For instance: http://www.sermon-online.de.

“The original 1545 version is incorrectly called “Alt-
deutsch” (‘Old German’) in the archive. Our NHG text
(which is possibly the 1892 revision) is a rather conserva-
tive version, while the 1912 and 1984 revised versions also
contain corrections of mistranslations by Luther and, hence,
deviate from the original ENHG text to a greater extent.



Greek version. The verses were rectified manu-
ally so that each version had the same number of
verses. A few OCR mistakes were also manually
corrected (e.g. 3ott was replaced by Gott ‘god’).
The entire corpus was then tokenized using the to-
kenizer script supplied with the Europarl corpus
(Koehn, 2005), and afterwards downcased.

Since there were still asymmetries in the as-
signment of phrases and sentences to the verses
between the versions, the resulting corpus was
not yet properly aligned. We applied a sentence
aligner to our data, the Gargantua toolkit (Braune
and Fraser, 2010). Next, the words of each aligned
verse pair were aligned using the GIZA++ toolkit
(Och and Ney, 2003).

The modernization often involves transforming
words into phrases and vice versa, such as solfu —
sollst du ‘should you’, or on gefehr — ohngefihr
‘approximately’ (literally: ‘without danger (of
saying so0)’). Hence, it is crucial that the word
aligner can handle 1:n/n:1 alignments. Upon man-
ual inspection, we found a lot of misalignments
with rarer tokens, many of which involve num-
bers, such as zweiundzwanzig ‘twenty-two’, which
would actually correspond to the multi-word to-
ken zwey vnd zwenzig in the original 1545 version.
These were probably misaligned because their fre-
quency in the corpus is not high enough to train a
translation model.

To minimize noise in our system’s input, align-
ment pairs with a length difference of more
than five characters were excluded from fur-
ther processing. Since the two texts are highly
similar—around 65% of the pairs align identical
wordforms—a length difference of that magnitude
rarely leads to meaningful alignments.

Some corpus statistics To assess the quality of
the resulting word pairs, we had a small sample
of 1,000 pairs of aligned non-identical wordforms
from the evaluation corpus manually inspected by
a student assistant. We identified six types of
alignments, listed in Table 2.° Instances that were
difficult to classify are assigned to a special class.

For deriving replacement rules, type 1 align-
ments are the perfect input. Pairs of type 2 and 3
are still useful, to a certain extent: correct rules can
be derived from the word roots; mapping of differ-
ing inflection and affixes, however, should proba-

>Throughout the paper, the examples are taken from the
development corpus while the figures are calculated based on
the evaluation corpus.

Type Example Freq Eval
1. Unproblematic ~ vnd — und ‘and’ 609  77%
2. Differing truncken — trunkenen 261  18%
inflection ‘drunken’
3. Differing oben — obenan ‘ontop” 40 5%
affixes
4. Closer modern  noch — weder ‘nei- 0 -
form exists ther/nor’
5. Extinct form stiindlin - an dem 1 -

Tage ‘on that day’
zwey ‘two’ — fiir ‘for’ 25 0%
fur “for’ (7) —fiir ‘for’ 64 19%

. Incorrect
. Unclear cases

~N QN

Table 2: Alignment types: types 1-5 are correct to
various degrees, type 6 is incorrect. For each type,
its frequency in the sample and evaluation results
for the more frequent types are given (see Sec. 6).

bly not be learned. Type 4 and 5 pairs (which oc-
cur very rarely) could be used to derive mappings
of entire words rather than character sequences.
Type 6 alignments clearly constitute noise.

We further computed the number of target types
a source word maps to. The pie chart in Fig. 1
shows that the vast majority of source types map
to only one target type, with a significant minority
mapping to two forms. The proportion of source
types mapping to 4—8 target types was so negligi-
ble that they were merged in the pie chart. The
quantity of source tokens that map to more than
one target type on the other hand is pretty large.
Even though the majority still has 1-2 mappings,
about 20-30% of source tokens map to more than
5 target types, as the central bar plot of Fig. 1
shows. However, if we exclude targets that oc-
cur only five times or less, the graph shows a more
balanced picture (right bar plot). Since the appli-
cation of rules is based on their frequencies, it is
highly likely that the impact of the infrequent rules
is balanced out by the dominant ones.

Procedure The resulting corpus consists of
550,000 aligned pairs of words or phrases. We
randomly picked 20% of the alignment pairs for
a development corpus, which was used for the de-
velopment of the rule extraction and application
processes described below. Another 40% were af-
terwards used to extract the replacement rules for
the following experiments (= training corpus), and
a final 20% were picked for an evaluation corpus.

4 Normalization Rules

We used a modified algorithm for Levenshtein dis-
tance which not only calculates the numerical edit
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Figure 1: Target types per source type/token. The pie chart shows the result for source types (evaluation
corpus), the central bar plot shows the results for all source tokens, the right bar plot only considers
tokens with a frequency > 5 (training and evaluation corpus). The columns are labeled by absolute

frequencies.

distance, but also outputs the respective edit opera-
tions (substitution, insertion, and deletion of single
characters) that map the strings to each other. The
record of edit operations was enriched with infor-
mation about the immediate context of the edited
character. Ex. (1) shows two sample edit opera-
tions, using the notation of phonological rewrite
rules.

(1) aae =-h/ j_r
(‘h’ is inserted between ‘j” and ‘r’)
b. v - u/ # _n
(‘v’ is replaced by ‘u’ between the left

word boundary (‘#’) and ‘n’)

Determining the context for these edit opera-
tions is not straightforward, because applying one
rule can change the context for other rules. Since
the Levenshtein implementation applies the rules
from left to right, we decided to use the (new) tar-
get word for the left context and the (unaltered)
source word for the right context (see also Fig. 2).

Identity rules In addition to canonical replace-
ment rules, our rule induction algorithm also pro-
duces identity rules, i.e. rewrite rules that map a
character to itself. Identity rules reflect the fact
that the majority of words remain unaltered when
mapped to their modernized forms, and many
words are modified by few characters only. Iden-
tity rules and actual rewrite rules are intended to
compete with each other during the process of
rewriting.

Multiple optimal paths Since the dynamic pro-
gramming algorithm works by determining a
least-cost path through a matrix, we are faced with

the problem that there may be multiple optimal
paths. In fact, this situation arises quite often.
Ex. (2) shows two optimal paths/alignments for
the pair jrem — ihrem “their’ .°

Input J r|le|m
(2) a. |Operations |[s |+ | =] =] =
Output ilh|lr|e|m
Input j|lr|e|m
b. [Operations || + | s | = | = | =
Output i|h|r|e|m

The ambiguity is obviously of no consequence

for the numerical distance, which is two for both
cases, but it makes a big difference for the rules.
In particular, it is usually very clear that one of
the alignments is the “correct” one (reflecting facts
about language change, here: Ex. (2a)), while the
other one is an implementation artifact (Ex. (2b)).

Rule sets and sequence-based rules To solve
the ambiguity problem, we first pick a random
path by preferring substitution over deletion over
addition on the cell level in the matrix. The rules
derived this way are combined to rule sets after-
wards. This is done by inspecting the positions
in the source and target word where the edits are
made. Whenever a series of edits occurs at the
same target or source position, we assume that
this is actually an insertion or deletion of a se-
quence of characters, such as an affix. When-
ever edits occur at adjacent positions, we assume
that it is a substitution of a character sequence by
another. By merging substitutions with adjacent
deletions/additions, we account for character se-
quences of variable length on each side of the rule.

6Operations: ‘+” means insertion, ‘= deletion, ‘s’ substi-
tution, ‘=" identity.
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Figure 2: The graph illustrates the actual map-
pings derived from fladernholtz — zypressenholz
‘cypress wood’. The central row shows the rule
contexts and how they are determined.
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In the example jrem — ihrem above (Ex. (2)),
the first two rules would be merged since they are
derived from adjacent non-identity edit operations.
This leads to the correct solution to the multi-path
problem, shown in Ex. (3).

Input j|lrle|lm
(3) | Operations || s [ =] =] =
Output ith|r|e|m

Note however that the rule merging does not al-
ways come up with entirely correct alignments.
For the word pair fladernholtz — zypressenholz
‘cypress wood’, optimal alignment would map
flader—zypresse/#_n whereas the actual
algorithm outputs smaller mappings, see Fig. 2.
Indiscriminate merging of identity rules would re-
sult in highly specific mappings of entire words
rather than character sequences—hence, identity
rules are never merged.

Epsilon identity rules In the system developed
so far, insertion rules are rather difficult to han-
dle. In generating modern wordforms by means
of the rewrite rules (see Sec. 5), they tend to ap-
ply in an uncontrollable way, garbling the words in
the process. This is due to the fact that the condi-
tions for the application of insertion rules are less
specific: while substitutions and deletions require
the left hand side (LHS) and the context to match
in the source word, insertions are constrained by
their two context characters only, since the LHS of
the rule is empty. At word boundaries, the prob-
lem gets even worse, since only one context side
is specified here. Furthermore, substitution and
deletion rules compete against the identity rules
for their LHS, which reflects the fact that the ma-
jority of characters are not changed in a mapping
to the modernized form—but no similar competi-
tor exists so far to curb the application of insertion
rules.

We therefore introduced epsilon identity rules:
after all replacement rules for an alignment pair

have been generated, an epsilon identity rule is
inserted between each pair of non-insertion rules,
i.e. at each position where no insertion has taken
place. The epsilon identity rules are taken to mean
that no insertion should be performed in the re-
spective context, thereby restricting the actual in-
sertion of characters.

Rank  Frequency Rule
= 1 24,867 e—eln_#
= 2 18,213 e—ele_r
= 3 18,200 e—ele_n
= 4 17,772 e —el/#_d
= 5 14,871 e—elr_#
= 6 14,853 n—n/e_#
S 20 8,448 v —u/#_n
- 176 1,288 f—e/u_f
+ 239 932 e—1/0_1
156 1443 j—ih/#_r
272 796 j—ih/#_n
329 601 j—ih/#_m
605 263 e— .d/t_u
879 142 ss—B/o_e

Table 3: Sample rankings and rules

Ranking of the rules Applying the rule induc-
tion algorithm to the development corpus yielded
about 1.1 million rule instances (training corpus:
2.2 million) of about 6,500 different types (train-
ing: 7,902). These were sorted and ranked ac-
cording to their frequency. Table 3 lists sample
instances of rules. Not surprisingly, none of the
top-ranked rules modifies the input word. Rank 6
is taken by the first rule that maps some real char-
acter rather than ¢ to itself (identity rules, ‘=’
Rank 20 features the first substitution rule (‘s’),
etc. The bottom part of the table lists frequent
sequence-based rules. The rule ranked 605th maps
the empty string to a whitespace followed by ‘d’.
This rule applies in mappings such as soltu — sollst
du ‘should you’.

5 Generating Normalized Wordforms

Normalizing ENHG texts is done on a word-by-
word basis, i.e. the input of the normalizing pro-
cess is always a single wordform. Words are pro-
cessed from left to right; for each position within
a word, applicable edit rules are determined. As
with the rule extraction process, the left context
is taken from the output already generated up to
that point, while the right context is always taken
from the input word. If a rule is applied, its right-
hand side is appended to the output string, and the



next character from the input word is processed.
The process continues until the end of the word
has been reached.

Rules with sequences of characters on the left-
hand side (LHS) are applicable at the position of
their first LHS character. In that case, if the rule is
applied, processing continues with the next char-
acter that is not part of the LHS.

Epsilon rules Epsilon rules, and epsilon identi-
ties in particular, require special consideration to
work within this system. If an epsilon identity is
applied, no other epsilon rules should be allowed
for the same context, otherwise insertions would
not be blocked. To achieve this, epsilon is treated
like an ordinary letter with regard to the LHS, and
words are preprocessed so that exactly one ep-
silon is placed between each character and at word
boundaries. For example, if the input word is jrem
‘theirs’, it is converted internally to the following
form:

(4) #ejerceceme#

Now, if an epsilon rule is applied, the read/write
head moves to the next character, thereby ensur-
ing that no other epsilon rule can be applied at the
same time in the same position. This also prevents
application of multiple insertion rules but at the
same time still permits insertion of multiple char-
acters, since those are merged into sets during rule
extraction. Of course, epsilon characters have to
be ignored for all purposes except for the LHS of
replacement rules; in particular, they do never in-
fluence rule contexts or prevent the recognition of
character sequences on the LHS.

Ranking methods For each character and its
context within a word, there will usually be a num-
ber of applicable rules to choose from. As our aim
is to generate exactly one (modernized) form for
each input word, a decision has to be made about
which rule to apply. Two approaches were tested:
(i) selecting the rule which had the highest fre-
quency during rule acquisition (‘best-rule’); and
(i1) selecting the word with the highest probabil-
ity score (‘best-probability’), which is calculated
based on rule frequencies.

(i) ‘Best-rule’: In the first approach, if more
than one rule application is possible at a given po-
sition, we simply select the rule with the highest
frequency. The evaluation shows that this method
already works quite well, however, it also has a

Original bible words Generated words
Old Modernized Best-rule  Best-prob.
1.  vnd und v v
jrem ihrem v v
vmbher  umbher v v
2. wetter wetter v *dieuetter
krefftige  kriftige v *krefftige
vrteil urteil v *urteill
3. fewr feuer *feur v
soltu sollst du *soltu v
4. ermanen ermahnen *ermanen  *ermannen
zween zwel *zZween *zwen

Table 4: Example mappings (prior to the dictio-
nary lookup) from the development corpus. ‘v’
means that the word is generated correctly by the
respective method, ‘*’ marks incorrectly gener-
ated wordforms. Words listed under 1. are gener-
ated correctly by both methods, words under 4. by
neither of them, the rest by one of the methodes.

disadvantage: as the left context for a rule depends
on the output of the previous one, applying one
rule can result in different rules being applicable
at later positions in the word. If we always apply
the most frequent rule, this can create situations
in which only very low-frequent rules are applica-
ble later, indicating that the resulting wordform is
unlikely to be correct. Also, when applying a rule
with a sequence of characters on the LHS, replace-
ment rules that modify any but the first character
of that sequence are never even considered.

For this reason, we came up with another
method that takes into account the frequencies of
all applied rules across the whole word.

(i1) ‘Best-probability’: In the second approach,
each generated variant is assigned a probability
score. We define the probability of a replace-
ment rule as its frequency divided by the sum
of all rule frequencies. The word probability is
calculated from the probabilities of the rules that
were used to generate it; for this, we used the
weighted harmonic mean, with the length of the
LHS as weights. If the LHS contains a sequence,
length is counted including additional epsilons be-
tween each character. This way, all variants gen-
erated from the same input word have the same to-
tal weight, regardless of whether sequence-based
rules were used or not.

Table 4 lists sample mappings as they result
from both methods.

Dictionary lookup Quite often, the highest-
ranked rules generate non-existing words. This



Total Identical Tokens NLD

Count Count Ratio Mean 4+ SD
All 109,972 71,163 64.71% 0.1019 £ 0.1630
Old bible text Identical 71,163 71,163  100.00%  0.0000 + 0.0000
(Baseline) Non-identical 38,809 0 0.00%  0.2889 4 0.1460
Unknowns 2,911 1,190 40.88%  0.1215 4 0.1359
All 109,972 91,620 83.31% 0.0408 + 0.1039
Best-rule method Identical 71,163 70,467 99.02% 0.0018 £ 0.0198
Non-identical 38,809 21,153 5451% 0.1122 £ 0.1483
Unknowns 2,911 1,390 47.75%  0.1081 £ 0.1357
All 109,972 92,172 83.81% 0.0396 + 0.1041
Best-probability Identical 71,163 69,358 97.46% 0.0042 £ 0.0279
method Non-identical 38,809 22,814 58.79% 0.1046 + 0.1509
Unknowns 2,911 1,255 43.11% 0.1201 £ 0.1407
All 109,972 100,074 91.00%  0.0251 £ 0.0913
Best-probability + Identical 71,163 70,854 99.57%  0.0008 £ 0.0126
dictionary method  Non-identical 38,809 29,220 75.29%  0.0697 £ 0.1423
Unknowns 2,911 2,238 76.88%  0.0646 + 0.1428

Table 5: Evaluation of exact matches and normalized Levenshtein distance (NLD) compared to the
modernized bible text; separately for all tokens (All), tokens that are or are not identical in both old
and modernized version (Identical/Non-identical), and tokens that were not seen in the training corpus
(Unknowns). The best result for each class is indicated in bold, the second-best in bold italics.

can be avoided by combining the methods de-
scribed above with a dictionary lookup. For this,
all variants are generated and then matched against
a dictionary. From all variants that are covered by
the dictionary, the one with the highest score (best-
rule or best-probability) is selected as the output
form. If no variant can be generated in this way,
the input word is left unchanged. The dictionary
used here consists of all wordforms from the mod-
ernized NHG Luther bible.’

6 Evaluation

For evaluation, we generated normalized forms of
all words in the evaluation corpus and compared
them to their aligned forms in the modernized
bible text. Two methods of comparison were ap-
plied: (i) counting the number of identical word-
forms; and (ii) calculating the average normalized
Levenshtein distance (NLD). Full evaluation re-
sults are shown in Table 5. Results for the dictio-
nary method are only reported in combination with
the best-probability method, which clearly outper-
form the combination with the best-rule method.

Exact matches As our aim is to generate mod-
ernized wordforms from historical ones, the logi-

"Using a dictionary with wordforms from current newspa-
per texts turned out problematic, since modern abbreviations,
typos, etc., result in too many false positives with the dictio-
nary lookup. Moreover, the vocabulary of newspaper texts
differs considerably from religious texts.

cal first step of an evaluation is to check how many
words from the ENHG text from 1545, when pro-
cessed with our algorithms, exactly match their
modernized NHG counterparts. Before normaliza-
tion, the ratio of identical tokens in the historical
and the modernized text is about 65%, i.e., only
a third of all wordforms even differ at all. This
is the baseline for our algorithm; any normalizing
process that results in less than 65% exact matches
has likely done more harm than good, and it would
be better to leave all words unchanged. Table 5
shows that both ranking methods we employed,
best-rule and best-probability, achieve match ra-
tios above 83% (lines °‘All’, column ‘Ratio’),
which is a significant increase from the baseline;
combining the best-probability method with the
dictionary lookup even yields 91% exact matches.
Our normalization approach is not only successful
in changing historical forms to modern ones, but
also in correctly leaving most of the wordforms
unchanged that do not need to be changed (97.46—
99.57%; lines ‘Identical’, column ‘Ratio’).

Results from evaluating the dictionary method
on the annotated sample set of non-identical word
pairs are shown in Table 2. Although the sam-
ple size is very small, the numbers suggest that
our approach is mostly suitable for pairs of type 1
(besides identical word pairs); in particular, it can
only ‘repair’ some inflection or affixes (types 2-3).
Incorrect mappings (type 6) are not produced.



Total Identical Tokens NLD
Count  Count Ratio Mean 4+ SD
Best- 18,352 696 3.79% 0.2483 4+ 0.1368
rule 18,352 0 0.00% 0.2443 £ 0.1226
Best- 17,800 1,805 10.14%  0.2372 + 0.1495
prob. 17,800 0 0.00% 0.2447 £ 0.1297
Dict 9,898 309 3.12% 0.2876 + 0.1528
‘ 9,898 0 0.00% 0.2789 4 0.1479

Table 6: NLD evaluation of word pairs that do not
match their aligned word after normalization. The
first line of each method shows the NLD before
rule application, the second line afterwards.

Normalized Levenshtein distance However,
simply counting correct guesses does not take into
account near-misses, where the algorithm edited
only a part of the word correctly, and is also not
a very fine-grained way of evaluation. There-
fore, we chose to use normalized Levenshtein dis-
tance (Beijering et al., 2008) to assess whether
our normalized variants are ‘closer’ to the correct
modern version than the (non-normalized) source
words. The NLD of a word pair is defined as the
Levenshtein distance divided by the length of the
longest possible alignment of the two words.® To
evaluate a set of word pairs, we calculate the aver-
age NLD of all word pairs in that set. This mea-
sure is not ideal for our task, since short words
are unduly penalized for being wrong, but it has
the advantage of being relatively intuitive; e.g., a
NLD of 0.5 indicates that roughly every second
character in a word was altered.

Comparing the old and the modernized bible
text yields an average NLD of 0.1019; as two
thirds of all words are already identical, this num-
ber is quite low. The three normalization methods
reduce that number to 0.0408-0.0251; this reduc-
tion stems, in parts, from the higher match ratio.
To evaluate whether the normalization improved
the wordforms even if they do not exactly match
the aligned form, we re-evaluated average NLD
on the sets of words that did not result in an exact
match. The results, given in Table 6,° show only

8As a side effect of our rules induction process, we can
easily calculate the number of alignment slots, since it equals
the total number of edit and (non-epsilon) identity rules.

“Words considered here include (i) words from identical
word pairs that unnecessarily have been modified (this, e.g.,
concerns 696 words with the best-rule method) and (ii) words
from non-identical word pairs that have not been normalized
successfully (best-rule: 18,352-696 = 17,656 words).

a slight improvement for the best-rule method,
while the best-probability method has even in-
creased the average NLD. With the latter method,
a high percentage of mismatches (10.14%) results
from source words that did not need to be changed.
Combined with the dictionary lookup, the ratio
of such cases is considerably reduced (to 3.12%).
Even the dictionary method is not able to com-
pletely avoid superfluous modifications. The rea-
son is that there are ambiguous words such as
waren, which can either be mapped to wahren
‘true’ or left unchanged: waren ‘were’. This
means that at the type level it cannot be decided
which of the two mappings is correct. Instead, we
would need context information at the token level,
which is beyond our word-based approach.'?

Method comparison Even though the results
for both ranking methods are quite close when
evaluated on all word pairs (83.31% versus
83.81%), the difference is statistically significant
within a confidence level of 99.9%, i.e., the best-
probability method results in better normalizations
on average. This is especially reflected in the
numbers for the non-identical word pairs, where
the difference between the two methods is even
greater. On the other hand, the best-rule method
performs better on ‘unknowns’, i.e. words which
were not already part of the training set (see Ta-
ble 5). This seems to indicate that a combination
of both methods could be favorable.

The overlap of the word lists generated by the
two methods is 93.13%, showing that there is a no-
ticeable percentage of words (around 3%) which
is modernized correctly with one method but not
the other. One crucial difference is the normaliza-
tion of second person verb forms ending in —fu,
e.g. soltu ‘should you’, which should be modern-
ized to sollst du. These forms show a contrac-
tion of verb and pronoun and are quite common in
the original ENHG bible text. With the best-rule
method, they do not get changed at all, as the ep-
silon identity rules are ranked higher than the ones
that would perform the necessary insertions. The
best-probability method, on the other hand, out-
puts the correctly modernized form; rules that pro-
cess the letter u appearing word-final after ¢ have
a very low probability, thus decreasing the total
probability of the unmodified wordform.

Finally, combining the methods with a dictio-
nary lookup results in remarkable improvements.

Jurish (2010) takes context information into account.



The number of exact matches increases from
83.31% to 88.66% (best-rule), and from 83.81%
to 91.00% (best-probability). As can be seen from
Table 5, the dictionary lookup on the one hand
helps to avoid superfluous normalization (with
identical word pairs). On the other hand, it also
improves on rule application, by filtering out rules
(or combinations of rules) that do not result in sen-
sible words. In contrast to rules, which operate
locally, the dictionary lookup has access to the en-
tire wordform and thus serves as a complementary
“guide” for suitable rule selection.

Since we use the complete modernized Luther
bible as the source of our dictionary, all correctly
normalized wordforms are guaranteed to be listed
in the dictionary. In this sense, the results repre-
sent an upper bound of this method. However, the
larger a dictionary is, the higher will be the chance
of “false friends”, i.e. wordforms that accidentally
match a generated wordform.

7 Conclusion

We showed that using only unsupervised learning,
a minimum of knowledge engineering, and freely
available resources, it is possible to map histori-
cal wordforms to their modern counterparts with
a high success rate. Even the simplest implemen-
tation of the process performs far better than the
baseline, a success that we were able to further im-
prove upon.

Open issues include the multi-path problem,
which is still not entirely solved, despite the intro-
duction of sequence-based rules (see Section 4 and
especially Fig. 2). There are a number of potential
solutions that we could pursue. The rule extrac-
tion process could be modified to output all possi-
ble paths from the source to the target word. This
would require some means to decide on the most
plausible path, such as the total number of rules af-
ter the single-character rules have been merged to
sets. Phonetic or even graphemic similarity (such
as the common substitutions of u and v) could also
be taken into account.

Another issue would be to replace our simple
heuristic of sequence determination by the use of
an association measure, such as the log-likelihood
ratio or the Fisher-Yates test, to determine which
rules are merged to sequences. This could include
identity rules in the sequences, which might solve
problems such as the one presented in Fig. 2.

Association measures could be further used to

determine the significance of the association be-
tween a rule and its context, and to potentially ab-
stract the rules from their specific contexts.

Another open question is the handling of multi-
tokens as source words. Since currently the rule
application operates on single words, multiple
source tokens can never be merged to a single
target token, even though that happens quite fre-
quently in our texts.
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