Importing MASC into the ANNIS linguistic database: A case study of mapping GrAF

Arne Neumann1 Nancy Ide2 Manfred Stede1

1EB Cognitive Science and SFB 632
University of Potsdam

2Department of Computer Science
Vassar College

August 8, 2013
GrAF

- XML serialization of the Linguistic Annotation Framework (ISO/LAF) (Ide and Suderman (2007; In press))
- intended as a generic “pivot” format

ANNIS

open source, web-based search and visualization tool for corpora with diverse types of annotation (Chiarcos et al. 2008; Zeldes et al. 2009)
GrAF

- XML serialization of the Linguistic Annotation Framework (ISO/LAF) (Ide and Suderman (2007; In press))
- intended as a generic “pivot” format

ANNIS

open source, web-based search and visualization tool for corpora with diverse types of annotation (Chiarcos et al. 2008; Zeldes et al. 2009)
Introduction II

Goals

- use GrAF-formatted corpora in ANNIS
- simplify empirical research of inter-layer interactions in corpora

Manually Annotated Sub-Corpus (MASC)

fully open, 500k word subcorpus of the Open American National Corpus (OANC) annotated on multiple levels
Goals

- use GrAF-formatted corpora in ANNIS
- simplify empirical research of inter-layer interactions in corpora

Manually Annotated Sub-Corpus (MASC)

fully open, 500k word subcorpus of the Open American National Corpus (OANC) annotated on multiple levels
ANNIS supports:

- visualization of multilayered annotations: syntax trees (constituents / dependencies), morphology, RST, coreference, information structure
- multimodal data: text, audio, video
- conflicting data: overlapping speakers in dialogues, multiple tokenizations / segmentations
supports:

- visualization of multilayered annotations: syntax trees (constituents / dependencies), morphology, RST, coreference, information structure
- multimodal data: text, audio, video
- conflicting data: overlapping speakers in dialogues, multiple tokenizations / segmentations
ANNIS supports:

- visualization of multilayered annotations: syntax trees (constituents / dependencies), morphology, RST, coreference, information structure
- multimodal data: text, audio, video
- conflicting data: overlapping speakers in dialogues, multiple tokenizations / segmentations
supports:

- visualization of multilayered annotations: syntax trees (constituents / dependencies), morphology, RST, coreference, information structure
- multimodal data: text, audio, video
- conflicting data: overlapping speakers in dialogues, multiple tokenizations / segmentations
The screenshot shows a search form and result. The AnnsQL query is displayed, and the result is shown in two different visualizations: a dependency graph and a constituent tree. The dependency graph highlights the sentence structure with arrows indicating the relationships between words. The constituent tree shows a hierarchical breakdown of the sentence constituents. The text displayed under the diagrams translates to: "The vase is bigger than the vase on the table. I find it looks not so good, because the table is too small."
Manually Annotated Sub-Corpus (MASC)

fully open, 500k word subcorpus of the Open American National Corpus (OANC)

- manually produced or hand-validated annotations: POS, shallow parse, Penn Treebank syntax, named entities, coreference...
- partially annotated for FrameNet frames, opinion, PropBank predicate-arguments, WordNet word senses, ...
- format: GrAF
Manually Annotated Sub-Corpus (MASC)

fully open, 500k word subcorpus of the Open American National Corpus (OANC)

- manually produced or hand-validated annotations: POS, shallow parse, Penn Treebank syntax, named entities, coreference...
- partially annotated for FrameNet frames, opinion, PropBank predicate-arguments, WordNet word senses, ...

format: GrAF
Manually Annotated Sub-Corpus (MASC)

fully open, 500k word subcorpus of the Open American National Corpus (OANC)

- manually produced or hand-validated annotations: POS, shallow parse, Penn Treebank syntax, named entities, coreference...
- partially annotated for FrameNet frames, opinion, PropBank predicate-arguments, WordNet word senses, ...
- format: GrAF
MASC and GrAF

LAF/GrAF

GrAF

graph-based, standoff XML format developed as a part of the ISO Linguistic Annotation Framework (ISO/LAF; ISO 24612, 2012)

LAF abstract model

- formalization of models used for associating information
 - e.g. directed-acyclic graphs, UML, ER diagrams, semantic networks, RDF...
- general enough to represent any type of linguistic annotation
LAF/GrAF

GrAF

graph-based, standoff XML format developed as a part of the ISO Linguistic Annotation Framework (ISO/LAF; ISO 24612, 2012)

LAF abstract model

- formalization of models used for associating information
 - e.g. directed-acyclic graphs, UML, ER diagrams, semantic networks, RDF...
- general enough to represent any type of linguistic annotation
LAF/GrAF

GrAF

graph-based, standoff XML format developed as a part of the ISO Linguistic Annotation Framework (ISO/LAF; ISO 24612, 2012)

LAF abstract model

- formalization of models used for associating information
 - e.g. directed-acyclic graphs, UML, ER diagrams, semantic networks, RDF...
- general enough to represent any type of linguistic annotation
GrAF as an intermediary

available converters

- importers/exporters for UIMA, GATE
- NLTK importer
- exporters for CoNLL IOB format, inline XML
- upcoming: GrAF-to-RDF → Linguistic Linked Open Data (LLOD)
Mapping GrAF to ANNIS via Salt

Pepper

- framework that converts linguistic data among various formats, e.g. CoNLL, EXMARA\textit{lda}, PAULA, TigerXML, RST\textit{Tool}, MMAX, TreeTagger and relANNIS (Zipser et al. 2011)
- uses Salt as an intermediary

Salt

- graph-based meta model (Zipser and Romary 2010) based on LAF
- advantage: write one converter (GrAF to Salt), use all existing exporters
Mapping GrAF to ANNIS via Salt

Pepper
- framework that converts linguistic data among various formats, e.g. CoNLL, EXMARaLDA, PAULA, TigerXML, RSTTool, MMAX, TreeTagger and relANNIS (Zipser et al. 2011)
- uses Salt as an intermediary

Salt
- graph-based meta model (Zipser and Romary 2010) based on LAF
- advantage: write one converter (GrAF to Salt), use all existing exporters
Conversion steps

- extract MASC corpus data using the Java-based GrAF API¹
- mapping graphs is straightforward
 - exception: explicit edge labels needed in Salt (e.g. for ordering constituents)

The GrAF-to-Salt/relANNIS will be included in the next SaltNPepper release, but source code is already available².

¹http://sourceforge.net/projects/iso-graf/
²https://korpling.german.hu-berlin.de/svn/saltnpepper/PepperModules/GrAFModules/
Conversion steps

- extract MASC corpus data using the Java-based GrAF API\(^1\)
- mapping graphs is straightforward
 - exception: explicit edge labels needed in Salt (e.g. for ordering constituents)

The GrAF-to-Salt/relANNIS will be included in the next SaltNPepper release, but source code is already available\(^2\).

\(^1\)http://sourceforge.net/projects/iso-graf/
\(^2\)https://korpling.german.hu-berlin.de/svn/saltnpepper/PepperModules/GrAFModules/
Conversion steps

- extract MASC corpus data using the Java-based GrAF API\(^1\)
- mapping graphs is straightforward
 - **exception:** explicit edge labels needed in Salt (e.g. for ordering constituents)

The GrAF-to-Salt/relANNIS will be included in the next SaltNPepper release, but source code is already available\(^2\).

\(^1\)http://sourceforge.net/projects/iso-graf/

\(^2\)https://korpling.german.hu-berlin.de/svn/saltnpepper/PepperModules/GrAFModules/
Querying MASC in ANNIS

ANNIS Query Language (AQL)

allows to search for specific token values and annotations as well as relationships between them, even across annotation level boundaries
Queries across multiple annotation levels

1. a VP that dominates a PP which contains a named person at its right border:
 \[\text{cat} = \text{"VP"} \land \text{cat} = \text{"PP"} \land \text{NER} = \text{"person"} \land \#1 > \#2 \land \#2 _r_ \#3\]

2. an NP that includes both a named entity of the type \textit{country} and a FrameNet frame element of the type \textit{Food}:
 \[\text{cat} = \text{"NP"} \land \text{anc:}:\text{type} = \text{"country"} \land \text{FE} = \text{"Food"} \land \#1 _i_ \#2 \land \#1 _i_ \#3\]
Figure: Querying MASC in ANNIS2 for an NP that includes both a *food* frame element and a *location* named entity
References I

